La teoría de conjuntos es de mucha utilidad en el desarrollo de las probabilidades, y es por ello que se debe revisar los conocimientos sobre las operaciones de conjuntos como lo son: la unión, la intersección, el complemento de un conjunto, etc.
.- Consideraremos a W como el conjunto universal el cual posee todos los elementos posibles, así el conjunto A es un subconjunto de W si todos los elementos de A son elementos de W, y se denota:
A Ì W si para todo x ÎA, x Î W
.- Sean A y B dos conjuntos cuales quiera entonces:
la unión se define como: C = A È B = { x / xÎA o xÎB};
la intersección se define como: C = A Ç B = { x / xÎA y xÎB};
el complemento se define como: Ac = { x Î W / x Ï A },
El conjunto que no posee elementos se denomina conjunto vacío y se denota por Æ . (Notemos que A Ç Ac = Æ )
Diremos que A y B son disjuntos o mutuamente excluyente si: A Ç B = Æ.
Para resolver algunos problemas de probabilidades es necesario conocer el numero de elementos que posee cierto conjunto y el conjunto universal, denominado, en probabilidades, espacio muestral, es por ello que se debe saber como determinar el número de elementos de cualquier conjunto, tarea que puede ser algo complicado, sin embargo en algunos casos esto se puede realizar y por ello es que es importante el aprender a calcular este número.
TECNICAS DE CONTEO:
Debes recordar la regla principal en las Técnicas de Conteo como lo es la ley de multiplicación:
Si se tienen n elementos de un tipo y m de otro, el número de parejas que se pueden formar tomando un elemento de cada tipo es
mxn.
Las permutaciones, las variaciones y las combinaciones, resultan de la regla de multiplicación
TEORÍAS DE CONTEO
Permutaciones y combinaciones: Contar el número de eventos que cumplen con algún conjunto de condiciones. Sirven para calcular la probabilidad de un evento cuando el número de eventos posibles es muy grande.
Factoriales: Dado un número entero positivo n el producto de todos los enteros desde n hasta 1 se llama factorial de n y se denota como n!. Ejemplo:
5! = 5 * 4 * 3 * 2 * 1
en notación: n! = n * (n-1) * (n-2) * ... 1
por definición 0! = 1
otra notación: 5! = 5 * 4!
n! = n (n-l)
Los factoriales sc usan para saber el número de formas en que se pueden organizar los objetos. Ejemplo:
cuatro envases con medio de cultivo y en cada uno de ellos se incuba un organismo diferente. ¿En cuantas formas se pueden acomodar en una incubadora?
4! =4 3 * 2 * 1 = 24 maneras
Para saber cuales son las formas de colocarlos se realiza un diagrama de árbol
sábado, 13 de septiembre de 2008
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario