sábado, 13 de septiembre de 2008

PROBABILIDAD

La probabilidad mide la frecuencia con la que ocurre un resultado en un experimento bajo condiciones suficientemente estables. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la matemática, la ciencia y la filosofía para sacar conclusiones sobre la probabilidad de sucesos potenciales y la mecánica subyacente de sistemas complejos.

Interpretaciones [editar]La palabra probabilidad no tiene una definición consistente. De hecho hay dos amplias categorías de interpretaciones de la probabilidad: los frecuentistas hablan de probabilidades sólo cuando se trata de experimentos aleatorios bien definidos. La frecuencia relativa de ocurrencia del resultado de un experimento, cuando se repite el experimento, es una medida de la probabilidad de ese suceso aleatorio. Los bayesianos, no obstante, asignan las probabilidades a cualquier declaración, incluso cuando no implica un proceso aleatorio, como una manera de representar su verosimilitud subjetiva

La teoría de conjuntos es de mucha utilidad en el desarrollo de las probabilidades, y es por ello que se debe revisar los conocimientos sobre las operaciones de conjuntos como lo son: la unión, la intersección, el complemento de un conjunto, etc.

Distribuciones de Probabilidad Discreta
Antes de clasificar a las distribuciones de Probabilidad Discreta, es conveniente conocer a que se le denomina función de probabilidad y distribución de probabilidad.


DEFINICION CLASICA DE PROBABILIDAD:

Sea un experimento aleatorio cuyo correspondiente espacio muestral E está formado por un número n finito de posibles resultados distintos y con la misma probabilidad de ocurrir {e1, e2, ... , en}

Si n1 resultados constituyen el subconjunto o suceso A1, n2 resultados constituyen el subconjunto o suceso A2 y, en general, nk resultados constituyen el subconjunto o suceso Ak de tal forma que:

es decir, que la probabilidad de cualquier suceso A es igual al cociente entre el número de casos favorables que integran el suceso A Regla de Laplace para E finitos y el número de casos posibles del espacio muestral E.

• Para que se pueda aplicar la regla de Laplace es necesario que todos los sucesos elementales sean equiprobables, es decir:

• Siendo A=

La probabilidad verifica las siguientes condiciones:

• La probabilidad de cualquier suceso es siempre un número no negativo entre 0 y 1

• La probabilidad del suceso seguro E vale 1

• La probabilidad del suceso imposible es 0

• La probabilidad de la unión de varios sucesos incompatibles o excluyentes A1, A1,..., Ar es igual a la suma de probabilidades de cada uno de ellos

Esta definición clásica de probabilidad fue una de las primeras que se dieron (1900) y se atribuye a Laplace; también se conoce con el nombre de probabilidad a priori pues, para calcularla, es necesario conocer, antes de realizar el experimento aleatorio, el espacio muestral y el número de resultados o sucesos elementales que entran a formar parte del suceso

La aplicación de la definición clásica de probabilidad puede presentar dificultades de aplicación cuando el espacio muestral es infinito o cuando los posibles resultados de un experimento no son equiprobables. Ej: En un proceso de fabricación de piezas puede haber algunas defectuosas y si queremos determinar la probabilidad de que una pieza sea defectuosa no podemos utilizar la definición clásica pues necesitaríamos conocer previamente el resultado del proceso de fabricación

Para resolver estos casos, se hace una extensión de la definición de probabilidad, de manera que se pueda aplicar con menos restricciones, llegando así a la definición frecuentista de probabilidad

3. Definición Frecuentista de la Probabilidad

La definición frecuentista consiste en definir la probabilidad como el límite cuando n tiende a infinito de la proporción o frecuencia relativa del suceso.

Sea un experimento aleatorio cuyo espacio muestral es E Sea A cualquier suceso perteneciente a E Si repetimos n veces el experimento en las mismas Condiciones, la frecuencia relativa del suceso A será:

Cuando el número n de repeticiones se hace muy grande la frecuencia relativa converge hacia un valor que llamaremos probabilidad del suceso A.

Es imposible llegar a este límite, ya que no podemos repetir el experimento un número infinito de veces, pero si podemos repetirlo muchas veces y observar como las frecuencias relativas tienden a estabilizarse

Esta definición frecuentista de la probabilidad se llama también probabilidad a posteriori ya que sólo podemos dar la probabilidad de un suceso después de repetir y observar un gran número de veces el experimento aleatorio correspondiente. Algunos autores las llaman probabilidades teóricas

4. Definición Subjetiva de la Probabilidad

Tanto la definición clásica como la frecuentista se basan en las repeticiones del experimento aleatorio; pero existen muchos experimentos que no se pueden repetir bajo las mismas condiciones y por tanto no puede aplicarse la interpretación objetiva de la probabilidad

En esos casos es necesario acudir a un punto de vista alternativo, que no dependa de las repeticiones, sino que considere la probabilidad como un concepto subjetivo que exprese el grado de creencia o confianza individual sobre la posibilidad de que el suceso ocurra

Se trata por tanto de un juicio personal o individual y es posible por tanto que, diferentes observadores tengan distintos grados de creencia sobre los posibles resultados, igualmente válidos

5. Definición Axiomática de la Probabilidad

La definición axiomática de la probabilidad es quizás la más simple de todas las definiciones y la menos controvertida ya que está basada en un conjunto de axiomas que establecen los requisitos mínimos para dar una definición de probabilidad. La ventaja de esta definición es que permite un desarrollo riguroso y matemático de la probabilidad. Fue introducida por A. N. Kolmogorov y aceptada por estadísticos y matemáticos en general

Definición

6. Teoremas Elementales o Consecuencias de los Axiomas


7. Probabilidad Condicionada

Hasta ahora hemos introducido el concepto de probabilidad considerando que la única información sobre el experimento era el espacio muestral. Sin embargo hay situaciones en las que se incorpora información suplementaria respecto de un suceso relacionado con el experimento aleatorio, cambiando su probabilidad de ocurrencia

El hecho de introducir más información, como puede ser la ocurrencia de otro suceso, conduce a que determinados sucesos no pueden haber ocurrido, variando el espacio de resultados y cambiando sus probabilidades

Definición

gla de Multiplicación de Probabilidades o Probabilidad Compuesta Partiendo de la definición de la probabilidad condicionada p(B/A) podemos escribir:

8. Teorema de la Probabilidad Compuesta o Producto

9. Teorema de la Probabilidad Total

10. Teorema de Bayes

11. Independencia de Sucesos



COMENTARIO:
La probabilidad estudia la posibilidad de que suceda un evento asi como las veces que podria ocurrir la misma y cual es la posibilidad de que suceda dicho evento.

No hay comentarios: