viernes, 26 de septiembre de 2008

ESPERANZA MATEMATICA

Se estudia la esperanza matemática, el teorema de momentos y la función generatriz como herramientas de gran importancia para evaluar parámetros estadísticos en funciones y variables aleatorias.

Una definición de Esperanza MatemáticaUna definición fácil de entender de lo que aquí llamaremos «Esperanza Matemática» es la relación entre el premio obtenido y probabilidad de acertar.

La definición matemática de «Esperanza Matemática» o Valor Esperado es bastante más compleja, pero en el desarrollo de este Sistema se limita a Premio x Probabilidad.
Aquí, un valor para la esperanza matemática de 1 indica «juego justo», un «menor que uno» indica «desfavorable para el jugador» y un «mayor que uno» es «favorable para el jugador» ( en las definiciones formales el cero suele ser el «juego justo», y los valores negativos o positivos indican «positivo o negativo para el jugador»).

Si la esperanza matemática es 1, el juego es «justo». Por ejemplo, apostar 1 euro a que una moneda sale cara o cruz, si el premio por acertar son 2 euros, y si se pierde, 0 euros. La esperanza del juego es 2 · (1/2) = 1. Entonces, consecuentemente con la teoría de juegos, podría pagar el euro para jugar o para rechazar jugar, porque de cualquier manera su expectativa total sería 0.
Si la esperanza matemática es menor que 1, el juego es «desfavorable para el jugador». Un sorteo que pague 500 a 1 pero en el que la probabilidad de acertar sea de 1 entre 1.000, la esperanza matemática es 500 · (1/1.000) = 0,5.
Si la esperanza matemática es mayor que 1, el juego es «favorable para el jugador», todo un «chollo» para el jugador. Un ejemplo sería un juego en el que se paga 10 a 1 por acertar el número que va a salir en un dado, en donde hay una probabilidad de acertar es de 1 entre 6. En este ejemplo el valor de la esperanza matemática es 10 · (1/6)=1,67 y por tanto en esas condiciones es juego «beneficioso» para el jugador.
Esperanza matemática de las loteríasLa esperanza matemática es un valor importante que conocer para cualquier tipo de premio, en función de su dificultad, y para cada sorteo concreto.

En la Primitiva, la esperanza matemática general o promedio es sencillamente 0,55 y en Euromillones es 0,5. Se corresponde a la cantidad que se devuelve en premios: el 55% o el 50% del total apostado por los jugadores. Ese dinero siempre se devuelve, teniendo en cuenta que con el tiempo los premios no entregados se acumulan en Botes.

En la Primitiva el reparto de premios funciona de modo que la cantidad jugada por todos los jugadores (excepto el 45% que se queda la organización) se suma y reparte en diversas categorías: una parte para los de más aciertos, otra parte para premios menores, reintegros, etc. Esto marca ciertamente diferencias entre la esperanza matemática (premios por probabilidad) de las diferentes categorías de premios. La esperanza matemática más alta es la del Reintegro que es de 0,1 (10 %).

Estos cálculos, que de por sí son sencillos, se ven complicados por algunas reglas relativamente recientes, como el «premio fijo para los acertantes de 3» o «los acertantes de 5 nunca pueden ganar más que los de 6», pero son en cualquier caso calculables con precisión.

En general, y para la Loto tradicional la norma a grandes rasgos es que la esperanza matemática es mayor que 1 cuando la cantidad de premios total (el bote más el 55% de la cantidad que todos los jugadores apuestan ese día) es mayor de lo que valen 13,9 millones de apuestas (dado que la probabilidad de acertar es de 1 entre 13,9 millones) y esto ocurre en muy muy muy raras ocasiones.

Pero imagenemos como hipótesis de trabajo que llega un día en el que se ha acumulado un bote de 20 millones de euros y en el que por alguna circunstancia nadie juega a la Loto excepto una persona. A 1 euro por apuesta, esto supondría pagar unos 14 millones de euros para jugar a todas las combinaciones y embolsarse todos los premios: el bote más lógicamente la recuperación del 55% de lo apostado y un 10% en reintegros (7,7 millones de euros, correspondiente al resto de premios menores de 5, 4, reintegros, etc.) Resultado: apostando 14 millones se recuperarían 27,7 millones de euros. Casi otros 14 millones de beneficio. ¡Buen negocio!

Un ejemplo real fue el sorteo de Bonoloto (Loto 6/49) del 18/11/1990. Un bote de 1.151 millones de pesetas se sumó a una recaudación de sólo 374 millones. A 25 pesetas por apuesta se hicieron en total unos 15 millones de apuestas. La probabilidad de acertar 6 era de 1 entre 14 millones, como siempre (y en total se repartía el 55% de la recaudación, como siempre). El premio de 1.200 millones que recibió un único acertante de 6 números tenía como base una esperanza matemática de 3,2 (frente a 1 que sería lo normal en un “juego justo” o 0,55 en un día convencional sin bote). Es decir, si el juego hubiera sido “justo” tanto para el jugador como para la banca, el premio debería haber sido de sólo unos 350 millones. Pero el ganador se llevó 1.200 millones porque había un bote acumulado de muchísimas semanas. La esperanza matemática promedio de ese día, contando todos los premios, era de 3,6. ¡Ese día ciertamente era mejor jugar a la Loto que no jugar!

Casi siempre, cualquier juego real de apuestas tiene esperanza menor que 1: lo más probable es perder dinero. El motivo por el que se juega es que en caso de ganar, los premios son de escándalo. Estamos dispuestos a perder una cantidad pequeña de dinero casi con seguridad a cambio de la posibilidad, por pequeña que sea, de hacernos ricos de la noche a la mañana.


HISTORIA:
Originalmente el concepto de esperanza matemática surgió en relación con los juegos de azar y en su forma mas simple es el producto de la cantidad que un jugador puede ganar y la probabilidad de que ganara. Por ejemplo: si tenemos uno de 10,000 boletos de una rifa cuyo premio principal es un viaje que vale 4,800 nuestra esperanza matemática es 4,800. 1/ 10,000= $0.48 por boleto. Si también hay un segundo premio de $1.200 y u tercer premio con valor de $400, podemos argumentar que en conjunto los 10,000 boletos pagan $4,800+ $1,200, + $400= $6,400 o en promedio $6,400/ 10,000= $0.64 por boleto. Veamos esto e forma diferente podemos argumentar que si la rifa se repite muchas veces perderíamos 99.97 porciento de las veces (o una probabilidad de 0.9997) y ganaríamos cada uno de los premios 0.01 porciento de las veces (o con probabilidad de 0.0001) en promedio ganaríamos así 0(0.9997) + 4,800(0.0001) + 1,200(0.0001) + 400(0.0001)= $0.64, que es la suma de os productos obtenidos al multiplicar cada cantidad por la probabilidad correspondiente.

EL VALOR ESPERADO DE VARIABLE ALEATORIA
En la ilustración de la sección anterior la cantidad que ganamos fue una variable aleatoria fue la suma de los productos obtenidos al multiplicar cada valor de la variable aleatoria de la probabilidad correspondiente. Nos referimos a la esperanza matemática de una variable aleatoria simplemente como su valor esperado, y entendemos la definición al caso continuo al reemplazar la operación e la suma por la integración


COMENTARIO:
La esperanza matemática es el valor que se espera de una variable, es la suma de todas las posibilidades que pueda haber en determinado evento.
La esperanza matemática o valor esperado es la suma de la probabilidad de todas las posibilidades por ejemplo. la relacion que hay entre el premio y todas las posibilidades de acertar.

No hay comentarios: